The role of 3D printing in advancing biotechnology and bioengineering: A review

Authors

DOI:

https://doi.org/10.62063/rev-203941

Keywords:

3D printing, additive manufacturing, instrumentation, bioengineering, biofluids, rapid-prototyping

Abstract

Three-dimensional (3D) printing, a subset of additive manufacturing technologies, has attracted significant attention from researchers for both laboratory-based and on-site prototyping since its widespread adoption. Its adaptability and versatility have made it an essential tool across various disciplines, particularly in biotechnology and bioengineering. While conventional manufacturing methods can offer precise material control and compatibility with biological fluids, they often pose significant challenges, such as high costs and the requirement for large, complex setups. These constraints limit their accessibility for experimental needs of biotechnology and bioengineering. However, 3D printers, with their high adaptability and ability to process a wide range of materials, have proven to be remarkably effective in resolving these challenges. Their capability to create custom parts and structures while maintaining compatibility with biomaterials and fluids has opened new possibilities not only in tissue engineering, drug development, and biomedical device fabrication but also across the broader fields of biotechnology, biochemistry, and related sciences. When examining the basic concept and development timeline of 3D printers, it becomes clear that emerging trends in artificial intelligence, robotics, and digitalization are expected to further accelerate their integration into real-world applications. These ongoing advancements are likely to benefit laboratories and production centers involved in biotechnology by speeding up experiments, paving the way for rapid production and testing, and making complex biofabrication processes more accessible and automated, including in areas like tissue engineering and personalized medicine.

References

Adamski, K., Kubicki, W., & Walczak, R. (2016). 3D Printed Electrophoretic Lab-on-chip for DNA Separation. Procedia Engineering, 168, 1454–1457. https://doi.org/10.1016/j.proeng.2016.11.416

Addario, G., Eussen, D., Djudjaj, S., Boor, P., Moroni, L., & Mota, C. (2024). 3D Printed Tubulointerstitium Chip as an In Vitro Testing Platform. Macromolecular Bioscience, 24(5), 2300440. https://doi.org/10.1002/mabi.202300440

Aguado-Maestro, I., De Frutos-Serna, M., González-Nava, A., Merino-De Santos, A. B., & García Alonso, M. (2021). Are the common sterilization methods completely effective for our in-house 3D printed biomodels and surgical guides? Injury, 52(6), 1341–1345. https://doi.org/10.1016/j.injury.2020.09.014

Aladese, A. D., & Jeong, H.H. (2021). Recent Developments in 3D Printing of Droplet-Based Microfluidics. BioChip Journal, 15(4), 313–333. https://doi.org/10.1007/s13206-021-00032-1

Alam, F., Shukla, V. R., Varadarajan, K. M., & Kumar, S. (2020). Microarchitected 3D printed polylactic acid (PLA) nanocomposite scaffolds for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 103, 103576. https://doi.org/10.1016/j.jmbbm.2019.103576

Alimi, O. A., Akinnawo, C. A., Onisuru, O. R., & Meijboom, R. (2020). 3-D printed microreactor for continuous flow oxidation of a flavonoid. Journal of Flow Chemistry, 10(3), 517–531. https://doi.org/10.1007/s41981-020-00089-3

Ambu, R., Oliveri, S. M., & Calì, M. (2024). Neck orthosis design for 3D printing with user enhanced comfort features. International Journal on Interactive Design and Manufacturing (IJIDeM), 18(8), 6055–6068. https://doi.org/10.1007/s12008-023-01507-1

Amekyeh, H., Tarlochan, F., & Billa, N. (2021). Practicality of 3D Printed Personalized Medicines in Therapeutics. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.646836

Amin, R., Knowlton, S., Dupont, J., Bergholz, J. S., Joshi, A., Hart, A., Yenilmez, B., Yu, C.H., Wentworth, A., Zhao, J.J., & Tasoglu, S. (2017). 3D-Printed Smartphone-Based Device for Label-Free Cell Separation. Journal of 3D Printing in Medicine, 1(3), 155–164. https://doi.org/10.2217/3dp-2016-0007

Amin, R., Knowlton, S., Hart, A., Yenilmez, B., Ghaderinezhad, F., Katebifar, S., Messina, M., Khademhosseini, A., & Tasoglu, S. (2016). 3D-printed microfluidic devices. Biofabrication, 8(2), 022001. https://doi.org/10.1088/1758-5090/8/2/022001

Ammar, H., Zoghbi, B. E., Faraj, J., & Khaled, M. (2025). Enhanced micromixer designs for chemical applications – Numerical simulations and analysis. Chemical Engineering and Processing - Process Intensification, 208, 110098. https://doi.org/10.1016/j.cep.2024.110098

An, J., Teoh, J. E. M., Suntornnond, R., & Chua, C. K. (2015). Design and 3D Printing of Scaffolds and Tissues. Engineering, 1(2), 261–268. https://doi.org/10.15302/J-ENG-2015061

Anadioti, E., Musharbash, L., Blatz, M. B., Papavasiliou, G., & Kamposiora, P. (2020). 3D printed complete removable dental prostheses: A narrative review. BMC Oral Health, 20(1), 343. https://doi.org/10.1186/s12903-020-01328-8

Ataei Kachouei, M., Parkulo, J., Gerrard, S. D., Fernandes, T., Osorio, J. S., & Ali, M. A. (2025). Attomolar-sensitive milk fever sensor using 3D-printed multiplex sensing structures. Nature Communications, 16(1), 265. https://doi.org/10.1038/s41467-024-55535-w

Augusto, I., Monteiro, D., Girard-Dias, W., Santos, T. O. dos, Belmonte, S. L. R., Oliveira, J. P. de, Mauad, H., Pacheco, M.D.S. Lenz, D., & Guimarães, M. C. C. (2016). Virtual Reconstruction and Three-Dimensional Printing of Blood Cells as a Tool in Cell Biology Education. PLOS ONE, 11(8), e0161184. https://doi.org/10.1371/journal.pone.0161184

Baden, T., Chagas, A. M., Gage, G., Marzullo, T., Prieto-Godino, L. L., & Euler, T. (2015). Open Labware: 3-D Printing Your Own Lab Equipment. PLOS Biology, 13(3), e1002086. https://doi.org/10.1371/journal.pbio.1002086

Baena-Moreno, F. M., González-Castaño, M., Navarro de Miguel, J. C., Miah, K. U. M., Ossenbrink, R., Odriozola, J. A., & Arellano-García, H. (2021). Stepping toward Efficient Microreactors for CO2 Methanation: 3D-Printed Gyroid Geometry. ACS Sustainable Chemistry & Engineering, 9(24), 8198–8206. https://doi.org/10.1021/acssuschemeng.1c01980

Bartolo, P., Malshe, A., Ferraris, E., & Koc, B. (2022). 3D bioprinting: Materials, processes, and applications. CIRP Annals, 71(2), 577–597. https://doi.org/10.1016/j.cirp.2022.06.001

Behrens, M. R., Fuller, H. C., Swist, E. R., Wu, J., Islam, M. M., Long, Z., Ruder, W.C., & Steward, R. (2020). Open-source, 3D-printed Peristaltic Pumps for Small Volume Point-of-Care Liquid Handling. Scientific Reports, 10(1), 1543. https://doi.org/10.1038/s41598-020-58246-6

Bhattacharjee, N., Urrios, A., Kang, S., & Folch, A. (2016). The upcoming 3D-printing revolution in microfluidics. Lab on a Chip, 16(10), 1720–1742. https://doi.org/10.1039/C6LC00163G

Biswas, A. A., Dhondale, M. R., Agrawal, A. K., Serrano, D. R., Mishra, B., & Kumar, D. (2024). Advancements in microneedle fabrication techniques: Artificial intelligence assisted 3D-printing technology. Drug Delivery and Translational Research, 14(6), 1458–1479. https://doi.org/10.1007/s13346-023-01510-9

Blázquez-Carmona, P., Sanz-Herrera, J. A., Martínez-Vázquez, F. J., Domínguez, J., & Reina-Romo, E. (2021). Structural optimization of 3D-printed patient-specific ceramic scaffolds for in vivo bone regeneration in load-bearing defects. Journal of the Mechanical Behavior of Biomedical Materials, 121, 104613. https://doi.org/10.1016/j.jmbbm.2021.104613

Bohr, A., Boetker, J., Wang, Y., Jensen, H., Rantanen, J., & Beck-Broichsitter, M. (2017). HighThroughput Fabrication of Nanocomplexes Using 3D-Printed Micromixers. Journal of Pharmaceutical Sciences, 106(3), 835–842. https://doi.org/10.1016/j.xphs.2016.10.027

Boolos, M., Corbin, S., Herrmann, A., & Regez, B. (2022). 3D printed orthotic leg brace with movement assist. Annals of 3D Printed Medicine, 7, 100062. https://doi.org/10.1016/j.stlm.2022.100062

Borro, B. C., Bohr, A., Bucciarelli, S., Boetker, J. P., Foged, C., Rantanen, J., & Malmsten, M. (2019). Microfluidics-based self-assembly of peptide-loaded microgels: Effect of three dimensional (3D) printed micromixer design. Journal of Colloid and Interface Science, 538, 559–568. https://doi.org/10.1016/j.jcis.2018.12.010

Bruno, R. D., Reid, J., & Sachs, P. C. (2019). The revolution will be open-source: How 3D bioprinting can change 3D cell culture. Oncotarget, 10(46), 4724–4726. https://doi.org/10.18632/oncotarget.27099

Byrne, R., Carrico, A., Lettieri, M., Rajan, A. K., Forster, R. J., & Cumba, L. R. (2024). Bioinks and biofabrication techniques for biosensors development: A review. Materials Today Bio, 28, 101185. https://doi.org/10.1016/j.mtbio.2024.101185

Castaldello, C., Sforza, E., Cimetta, E., Morosinotto, T., & Bezzo, F. (2019). Microfluidic Platform for Microalgae Cultivation under Non-limiting CO2 Conditions. Industrial & Engineering Chemistry Research, 58(39), 18036–18045. https://doi.org/10.1021/acs.iecr.9b02888

Chagas, A. M., Prieto-Godino, L. L., Arrenberg, A. B., & Baden, T. (2017). The €100 lab: A 3D-printable open-source platform for fluorescence microscopy, optogenetics, and accurate temperature control during behaviour of zebrafish, Drosophila, and Caenorhabditis elegans. PLOS Biology, 15(7), e2002702. https://doi.org/10.1371/journal.pbio.2002702

Chan, H. N., Shu, Y., Xiong, B., Chen, Y., Chen, Y., Tian, Q., Michael, S.A., Shen, B., Wu, H. (2016a). Simple, Cost-Effective 3D Printed Microfluidic Components for Disposable, Point-of-Care Colorimetric Analysis. ACS Sensors, 1(3), 227–234. https://doi.org/10.1021/acssensors.5b00100

Chen, X. B., Fazel Anvari-Yazdi, A., Duan, X., Zimmerling, A., Gharraei, R., Sharma, N. K., Sweilem, S., & Ning, L. (2023). Biomaterials / bioinks and extrusion bioprinting. Bioactive Materials, 28, 511–536. https://doi.org/10.1016/j.bioactmat.2023.06.006

Chiadò, A., Palmara, G., Chiappone, A., Tanzanu, C., Pirri, C. F., Roppolo, I., & Frascella, F. (2020). A modular 3D printed lab-on-a-chip for early cancer detection. Lab on a Chip, 20(3), 665–674. https://doi.org/10.1039/C9LC01108K

Choe, S., Kim, Y., Park, G., Lee, D. H., Park, J., Mossisa, A. T., Lee, S., & Myung, J. (2022). Biodegradation of 3D-Printed Biodegradable/Non-biodegradable Plastic Blends. ACS Applied Polymer Materials, 4(7), 5077–5090. https://doi.org/10.1021/acsapm.2c00600

Choi, J.-W., Medina, F., Kim, C., Espalin, D., Rodriguez, D., Stucker, B., & Wicker, R. (2011). Development of a mobile fused deposition modeling system with enhanced manufacturing flexibility. Journal of Materials Processing Technology, 211(3), 424–432. https://doi.org/10.1016/j.jmatprotec.2010.10.019

Cingesar, I. K., Marković, M.-P., & Vrsaljko, D. (2025). Integrating 3D printed microreactors and microseparators for efficient biodiesel production. Chemical Engineering and Processing - Process Intensification, 209, 110165. https://doi.org/10.1016/j.cep.2025.110165

Cocovi-Solberg, D. J., Rosende, M., Michalec, M., & Miró, M. (2019). 3D Printing: The Second Dawn of Lab-On-Valve Fluidic Platforms for Automatic (Bio)Chemical Assays. Analytical Chemistry, 91(1), 1140–1149. https://doi.org/10.1021/acs.analchem.8b04900

Colosi, C., Shin, S. R., Manoharan, V., Massa, S., Costantini, M., Barbetta, A., Dokmeci, M.R., Dentini, M., & Khademhosseini, A. (2016). Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity Bioink. Advanced Materials, 28(4), 677–684. https://doi.org/10.1002/adma.201503310

Crump, S. S. (1992). United States Patent No. US5121329A. Retrieved from https://patents.google.com/patent/US5121329A/en

Daly, A. C., Prendergast, M. E., Hughes, A. J., & Burdick, J. A. (2021). Bioprinting for the Biologist. Cell, 184(1), 18–32. https://doi.org/10.1016/j.cell.2020.12.002

Davis, A. Y., Zhang, Q., Wong, J. P. S., Weber, R. J., & Black, M. S. (2019). Characterization of volatile organic compound emissions from consumer level material extrusion 3D printers. Building and Environment, 160, 106209. https://doi.org/10.1016/j.buildenv.2019.106209

Decante, G., Costa, J. B., Silva-Correia, J., Collins, M. N., Reis, R. L., & Oliveira, J. M. (2021). Engineering bioinks for 3D bioprinting. Biofabrication, 13(3), 032001. https://doi.org/10.1088/17585090/abec2c

Detamornrat, U., McAlister, E., Hutton, A. R. J., Larrañeta, E., & Donnelly, R. F. (2022). The Role of 3D Printing Technology in Microengineering of Microneedles. Small, 18(18), 2106392. https://doi.org/10.1002/smll.202106392

Dimo, A., Longo, U. G., Schena, E., & Presti, D. L. (2024). A 3-D-Printed Wearable Sensor Based on Fiber Bragg Gratings for Shoulder Motion Monitoring. IEEE Sensors Journal, 24(10), 16145-16152. https://doi.org/10.1109/JSEN.2024.3383088

Ding, L., Razavi Bazaz, S., Asadniaye Fardjahromi, M., McKinnirey, F., Saputro, B., Banerjee, B., Graham Vesey, G., & Warkiani, M. E. (2022). A modular 3D printed microfluidic system: A potential solution for continuous cell harvesting in large-scale bioprocessing. Bioresources and Bioprocessing, 9(1), 64. https://doi.org/10.1186/s40643-022-00550-2

Dutta, S. D., Hexiu, J., Patel, D. K., Ganguly, K., & Lim, K.-T. (2021). 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering. International Journal of Biological Macromolecules, 167, 644–658. https://doi.org/10.1016/j.ijbiomac.2020.12.011

Enders, A., Preuss, J.-A., & Bahnemann, J. (2021). 3D Printed Microfluidic Spiral Separation Device for Continuous, Pulsation-Free and Controllable CHO Cell Retention. Micromachines, 12(9), 1060. https://doi.org/10.3390/mi12091060

Feng, L., Liang, S., Zhou, Y., Luo, Y., Chen, R., Huang, Y., Chen, Y., Xu, M., & Yao, R. (2020). Three-Dimensional Printing of Hydrogel Scaffolds with Hierarchical Structure for Scalable Stem Cell Culture. ACS Biomaterials Science & Engineering, 6(5), 2995–3004. https://doi.org/10.1021/acsbiomaterials.9b01825

Garcia-Gonzalez, H., Lopez-Pola, T., Fernandez-Rubio, P., & Fernandez-Rodriguez, P. (2024). Analysis of Volatile Organic Compound Emissions in 3D Printing: Implications for Indoor Air Quality. Buildings, 14(11), 3343. https://doi.org/10.3390/buildings14113343

Glasco, D. L., Elhassan, M. M., McLeod, W. T., & Bell, J. G. (2024). Nonenzymatic Detection of Glucose Using 3D Printed Carbon Electrodes in Human Saliva. ECS Sensors Plus, 3(2), 020602. https://doi.org/10.1149/2754-2726/ad3a58

Griffin, K., & Pappas, D. (2023). 3D printed microfluidics for bioanalysis: A review of recent advancements and applications. TrAC Trends in Analytical Chemistry, 158, 116892. https://doi.org/10.1016/j.trac.2022.116892

Gu, J., Wensing, M., Uhde, E., & Salthammer, T. (2019). Characterization of particulate and gaseous pollutants emitted during operation of a desktop 3D printer. Environment International, 123, 476-485. https://doi.org/10.1016/j.envint.2018.12.014

Gul, S., & Yalinkilic, F. (2025). Teaching of the subject ‘Biomolecules in Living Organisms’ using 3D printing models. Education and Information Technologies. https://doi.org/10.1007/s10639-02513355-5

Hari Raj, K., Gnanavel, S., & Ramalingam, S. (2023). Investigation of 3D printed biodegradable PLA orthopedic screw and surface modified with nanocomposites (Ti–Zr) for biocompatibility. Ceramics International, 49(5), 7299–7307. https://doi.org/10.1016/j.ceramint.2022.10.188

Herreros-Pomares, A., Zhou, X., Calabuig-Fariñas, S., Lee, S.-J., Torres, S., Esworthy, T., Hann, S.Y., Jantus-Lewintre, E., Camps, C., & Zhang, L. G. (2021). 3D printing novel in vitro cancer cell culture model systems for lung cancer stem cell study. Materials Science and Engineering: C,122, 111914. https://doi.org/10.1016/j.msec.2021.111914

Honda, S., Fujibayashi, S., Shimizu, T., Yamaguchi, S., Okuzu, Y., Takaoka, Y., Masuda, S., Takemoto, M., Kawai, T., Otsuki, B., Goto, K., & Matsuda, S. (2024). Strontium-loaded 3D intramedullary nail titanium implant for critical-sized femoral defect in rabbits. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 112(3), e35393. https://doi.org/10.1002/jbm.b.35393

Hu, H., Chen, J., Li, S., Xu, T., & Li, Y. (2023). 3D printing technology and applied materials in eardrum regeneration. Journal of Biomaterials Science, Polymer Edition, 34(7), 950–985. https://doi.org/10.1080/09205063.2022.2147350

Hull, C. W. (1986). United States Patent No. US4575330A. Retrieved from https://patents.google.com/patent/US4575330A/en

Hussaini, A. A., Sarilmaz, A., Ozel, F., Erdal, M. O., & Yıldırım, M. (2024). CeO2:BaMoO4 nanocomposite based 3D-printed electrodes for electrochemical detection of the dopamine. Materials Science in Semiconductor Processing, 180, 108587. https://doi.org/10.1016/j.mssp.2024.108587

Ibáñez-de-Garayo, A., Imizcoz, M., Maisterra, M., Almazán, F., Sanz, D., Bimbela, F., Cornejo, A., Pellejero, I., & Gandía, L. M. (2023). The 3D-Printing Fabrication of Multichannel Silicone Microreactors for Catalytic Applications. Catalysts, 13(1), 157. https://doi.org/10.3390/catal13010157

Jang, M. J., Bae, S. K., Jung, Y. S., Kim, J. C., Kim, J. S., Park, S. K., Suh, J.S., Yi, S.J., Ahn, S.H., & Lim, J. O. (2021). Enhanced wound healing using a 3D printed VEGF-mimicking peptide incorporated hydrogel patch in a pig model. Biomedical Materials, 16(4), 045013. https://doi.org/10.1088/1748-605X/abf1a8

J. Clark, M., Garg, T., E. Rankin, K., Bradshaw, D., & M. Nightingale, A. (2024). 3D printed filtration and separation devices with integrated membranes and no post-printing assembly. Reaction Chemistry & Engineering, 9(2), 251–259. https://doi.org/10.1039/D3RE00245D

Ji, Q., Zhang, J. M., Liu, Y., Li, X., Lv, P., Jin, D., & Duan, H. (2018). A Modular Microfluidic Device via Multimaterial 3D Printing for Emulsion Generation. Scientific Reports, 8(1), 4791. https://doi.org/10.1038/s41598-018-22756-1

Jiao, Z., Zhao, L., Tang, C., Shi, H., Wang, F., & Hu, B. (2019). Droplet-based PCR in a 3D-printed microfluidic chip for miRNA-21 detection. Analytical Methods, 11(26), 3286–3293. https://doi.org/10.1039/C9AY01108K

Johnson, B. N., Lancaster, K. Z., Hogue, I. B., Meng, F., Kong, Y. L., Enquist, L. W., & McAlpine, M. C. (2016). 3D printed nervous system on a chip. Lab on a Chip, 16(8), 1393–1400. https://doi.org/10.1039/C5LC01270H

Jones, R., Haufe, P., Sells, E., Iravani, P., Olliver, V., Palmer, C., & Bowyer, A. (2011). RepRap – the replicating rapid prototyper. Robotica, 29(1), 177–191. https://doi.org/10.1017/S026357471000069X

Katey, B., Voiculescu, I., Penkova, A. N., & Untaroiu, A. (Eds.). (2023). A Review of Biosensors and Their Applications. ASME Open Journal of Engineering, 2(020201). https://doi.org/10.1115/1.4063500

Latsch, B., Schäfer, N., Grimmer, M., Dali, O. B., Mohseni, O., Bleichner, N., Altmann, A.A., Schaumann, S., Wolf, S.I., Seyfarth, A., Beckerle, P., & Kupnik, M. (2024). 3D-Printed Piezoelectric PLA-Based Insole for Event Detection in Gait Analysis. IEEE Sensors Journal, 24(16), 26472–26486. https://doi.org/10.1109/JSEN.2024.3416847

Lavrentieva, A., Fleischhammer, T., Enders, A., Pirmahboub, H., Bahnemann, J., & Pepelanova, I. (2020). Fabrication of Stiffness Gradients of GelMA Hydrogels Using a 3D Printed Micromixer. Macromolecular Bioscience, 20(7), 2000107. https://doi.org/10.1002/mabi.202000107

Lee, J.-Y., An, J., & Chua, C. K. (2017). Fundamentals and applications of 3D printing for novel materials. Applied Materials Today, 7, 120–133. https://doi.org/10.1016/j.apmt.2017.02.004

Lerman, M. J., Lembong, J., Gillen, G., & Fisher, J. P. (2018). 3D printing in cell culture systems and medical applications. Applied Physics Reviews, 5(4), 041109. https://doi.org/10.1063/1.5046087

Li, B., Xue, Z., Jiang, B., Feng, T., Zhang, L., Wang, X., & He, J. (2023). 3D printing of infrared transparent ceramics via material extrusion. Additive Manufacturing, 61, 103364. https://doi.org/10.1016/j.addma.2022.103364

Li, H., Tan, Y. J., Kiran, R., Tor, S. B., & Zhou, K. (2021). Submerged and non-submerged 3D bioprinting approaches for the fabrication of complex structures with the hydrogel pair GelMA and alginate/methylcellulose. Additive Manufacturing, 37, 101640. https://doi.org/10.1016/j.addma.2020.101640

Li, J., & Tanaka, H. (2018). Rapid customization system for 3D-printed splint using programmable modeling technique – a practical approach. 3D Printing in Medicine, 4(1), 5. https://doi.org/10.1186/s41205-018-0027-6

Li, P., Li, M., Yuan, Z., Jiang, X., Yue, D., Ye, B., Zhao, Z., Jiang, J., Fan, Q., Zhou, Z., & Chen, H. (2021). 3D printed integrated separator with hybrid micro-structures for high throughput and magnetic-free nucleic acid separation from organism samples. Separation and Purification Technology, 271, 118881. https://doi.org/10.1016/j.seppur.2021.118881

Liao, Y., Liu, S., Li, X., Feng, G., Xue, W., Li, F., & Zhang, K. (2025). 3D printed kenics static micromixer. Microsystem Technologies, 31(1), 137–145. https://doi.org/10.1007/s00542-024-05718-8

Lim, K. H. A., Loo, Z. Y., Goldie, S. J., Adams, J. W., & McMenamin, P. G. (2016). Use of 3D printed models in medical education: A randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy. Anatomical Sciences Education, 9(3), 213–221. https://doi.org/10.1002/ase.1573

Liu, B., Ran, B., Chen, C., Shi, L., Liu, Y., Chen, H., & Zhu, Y. (2022). A low-cost and high-performance 3D micromixer over a wide working range and its application for high-sensitivity biomarker detection. Reaction Chemistry & Engineering, 7(11), 2334–2347. https://doi.org/10.1039/D2RE00103A

Liu, Y., Jin, G., Lim, J.-H., & Kim, J.-E. (2024). Effects of washing agents on the mechanical and biocompatibility properties of water-washable 3D printing crown and bridge resin. Scientific Reports, 14(1), 9909. https://doi.org/10.1038/s41598-024-60450-7

Ma, C., Zhu, B., Qian, Z., Ren, L., Yuan, H., & Meng, Y. (2023). 3D-printing of conductive inks based flexible tactile sensor for monitoring of temperature, strain and pressure. Journal of Manufacturing Processes, 87, 1–10. https://doi.org/10.1016/j.jmapro.2023.01.008

Maier, M. C., Valotta, A., Hiebler, K., Soritz, S., Gavric, K., Grabner, B., & Gruber-Woelfler, H. (2020). 3D Printed Reactors for Synthesis of Active Pharmaceutical Ingredients in Continuous Flow. Organic Process Research & Development, 24(10), 2197–2207. https://doi.org/10.1021/acs.oprd.0c00228

Majeed, H. F., Hamad, T. I., & Bairam, L. R. (2024). Enhancing 3D-printed denture base resins: A review of material innovations. Science Progress, 107(3), 00368504241263484. https://doi.org/10.1177/00368504241263484

Manousi, E., Chatzitaki, A.-T., Vakirlis, E., Karavasili, C., & Fatouros, D. G. (2024). Development and in vivo evaluation of 3D printed hydrogel patches for personalized cosmetic use based on skin type. Journal of Drug Delivery Science and Technology, 92, 105306. https://doi.org/10.1016/j.jddst.2023.105306

Marković, M.-P., Žižek, K., Soldo, K., Sunko, V., Zrno, J., & Vrsaljko, D. (2024). 3D Printed Microfluidic Separators for Solid/Liquid Suspensions. Applied Sciences, 14(17), 7856. https://doi.org/10.3390/app14177856

Michalski, M. H., & Ross, J. S. (2014). The Shape of Things to Come: 3D Printing in Medicine. JAMA, 312(21), 2213–2214. https://doi.org/10.1001/jama.2014.9542

Mironov, V., Reis, N., & Derby, B. (2006). Review: Bioprinting: A Beginning. Tissue Engineering, 12(4), 631–634. https://doi.org/10.1089/ten.2006.12.631

Monfared, V., Ramakrishna, S., Nasajpour-Esfahani, N., Toghraie, D., Hekmatifar, M., & Rahmati, S. (2023). Science and Technology of Additive Manufacturing Progress: Processes, Materials, and Applications. Metals and Materials International, 29(12), 3442–3470. https://doi.org/10.1007/s12540-023-01467-x

Moragues, T., Arguijo, D., Beneyton, T., Modavi, C., Simutis, K., Abate, A. R., Baret, J.C., . deMello, A.J., Densmore, D., & Griffiths, A. D. (2023). Droplet-based microfluidics. Nature Reviews Methods Primers, 3(1), 1–22. https://doi.org/10.1038/s43586-023-00212-3

Narsimhachary, D., & Kalyan Phani, M. (2024). Additive Manufacturing: Environmental Impact, and Future Perspective. In S. Rajendrachari (Ed.), Practical Implementations of Additive Manufacturing Technologies (pp. 295–308). Singapore: Springer Nature. https://doi.org/10.1007/978-981-995949-5_14

Nguyen, H. Q., & Seo, T. S. (2022). A 3D printed size-tunable flow-focusing droplet microdevice to produce cell-laden hydrogel microspheres. Analytica Chimica Acta, 1192, 339344. https://doi.org/10.1016/j.aca.2021.339344

Ntagios, M., Nassar, H., Pullanchiyodan, A., Navaraj, W. T., & Dahiya, R. (2020). Robotic Hands with Intrinsic Tactile Sensing via 3D Printed Soft Pressure Sensors. Advanced Intelligent Systems, 2(6), 1900080. https://doi.org/10.1002/aisy.201900080

Oldach, B., Chiang, Y.-Y., Ben-Achour, L., Chen, T.-J., & Kockmann, N. (2024). Performance of different microfluidic devices in continuous liquid-liquid separation. Journal of Flow Chemistry, 14(3), 547–557. https://doi.org/10.1007/s41981-024-00326-z

Oss Boll, H., de Castro Leitão, M., Garay, A. V., Batista, A. C. C., de Resende, S. G., da Silva, L. F., Reis, V.C.B., Vieira, E.M., & Coelho, C. M. (2023). SynBio in 3D: The first synthetic genetic circuit as a 3D printed STEM educational resource. Frontiers in Education, 8. https://doi.org/10.3389/feduc.2023.1110464

Ozer, T., Agir, I., & Borch, T. (2024). Water monitoring with an automated smart sensor supported with solar power for real-time and long range detection of ferrous iron. Analyst, 149(9), 2671–2679.

Ozer, T., Agir, I., & Henry, C. S. (2022a). Low-cost Internet of Things (IoT)-enabled a wireless wearable device for detecting potassium ions at the point of care. Sensors and Actuators B: Chemical, 365, 131961.

Ozer, T., Agir, I., & Henry, C. S. (2022b). Rapid prototyping of ion-selective electrodes using a low-cost 3D printed internet-of-things (IoT) controlled robot. Talanta, 247, 123544. https://doi.org/10.1016/j.talanta.2022.123544

Patabadige, D. E. W., Jia, S., Sibbitts, J., Sadeghi, J., Sellens, K., & Culbertson, C. T. (2016). Micro Total Analysis Systems: Fundamental Advances and Applications. Analytical Chemistry, 88(1), 320–338. https://doi.org/10.1021/acs.analchem.5b04310

Pechlivani, E. M., Pemas, S., Kanlis, A., Pechlivani, P., Petrakis, S., Papadimitriou, A., Tzovaras, D., & Hatzistergos, K. E. (2023). Enhanced Growth of Bacterial Cells in a Smart 3D Printed Bioreactor. Micromachines, 14(10), 1829. https://doi.org/10.3390/mi14101829

Peng, W., Datta, P., Ayan, B., Ozbolat, V., Sosnoski, D., & Ozbolat, I. T. (2017). 3D bioprinting for drug discovery and development in pharmaceutics. Acta Biomaterialia, 57, 26–46. https://doi.org/10.1016/j.actbio.2017.05.025

Pinger, C. W., Geiger, M. K., & Spence, D. M. (2020). Applications of 3D-Printing for Improving Chemistry Education. Journal of Chemical Education, 97(1), 112–117. https://doi.org/10.1021/acs.jchemed.9b00588

Plevniak, K., Campbell, M., Myers, T., Hodges, A., & He, M. (2016). 3D printed auto-mixing chip enables rapid smartphone diagnosis of anemia. Biomicrofluidics, 10(5), 054113. https://doi.org/10.1063/1.4964499

Podwin, A., & Dziuban, J. A. (2017). Modular 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms. Journal of Micromechanics and Microengineering, 27(10), 104004. https://doi.org/10.1088/1361-6439/aa7a72

Pugliese, R., Beltrami, B., Regondi, S., & Lunetta, C. (2021). Polymeric biomaterials for 3D printing in medicine: An overview. Annals of 3D Printed Medicine, 2, 100011. https://doi.org/10.1016/j.stlm.2021.100011

Radhakrishnan, S., Nagarajan, S., Belaid, H., Farha, C., Iatsunskyi, I., Coy, E., Soussan, L., Huon, V., Bares, J., Belkacemi, K., Teyssier, C., Balme, S., Miele, P., Cornu, D., Kalkura, N., Cavaillès, V., & Bechelany, M. (2021). Fabrication of 3D printed antimicrobial polycaprolactone scaffolds for tissue engineering applications. Materials Science and Engineering: C, 118, 111525. https://doi.org/10.1016/j.msec.2020.111525

Razavi Bazaz, S., Sayyah, A., Hazeri, A. H., Salomon, R., Abouei Mehrizi, A., & Ebrahimi Warkiani, M. (2024). Micromixer research trend of active and passive designs. Chemical Engineering Science, 293, 120028. https://doi.org/10.1016/j.ces.2024.120028

Renner, M., & Griesbeck, A. (2020). Think and Print: 3D Printing of Chemical Experiments. Journal of Chemical Education, 97(10), 3683–3689. https://doi.org/10.1021/acs.jchemed.0c00416

Richards, D. J., Tan, Y., Jia, J., Yao, H., & Mei, Y. (2013). 3D Printing for Tissue Engineering. Israel Journal of Chemistry, 53(9–10), 805–814. https://doi.org/10.1002/ijch.201300086

Sachyani Keneth, E., Kamyshny, A., Totaro, M., Beccai, L., & Magdassi, S. (2021). 3D Printing Materials for Soft Robotics. Advanced Materials, 33(19), 2003387. https://doi.org/10.1002/adma.202003387

Salthammer, T. (2022). Microplastics and their Additives in the Indoor Environment. Angewandte Chemie, 134(32), e202205713. https://doi.org/10.1002/ange.202205713

Schellenberg, J., Dehne, M., Lange, F., Scheper, T., Solle, D., & Bahnemann, J. (2023). Establishment of a Perfusion Process with Antibody-Producing CHO Cells Using a 3D-Printed Microfluidic Spiral Separator with Web-Based Flow Control. Bioengineering, 10(6), 656. https://doi.org/10.3390/bioengineering10060656

Shao, H., He, J., Lin, T., Zhang, Z., Zhang, Y., & Liu, S. (2019). 3D gel-printing of hydroxyapatite scaffold for bone tissue engineering. Ceramics International, 45(1), 1163–1170. https://doi.org/10.1016/j.ceramint.2018.09.300

Shrimal, P., Jadeja, G., & Patel, S. (2020). A review on novel methodologies for drug nanoparticle preparation: Microfluidic approach. Chemical Engineering Research and Design, 153, 728–756. https://doi.org/10.1016/j.cherd.2019.11.031

Singh, S., Choudhury, D., Yu, F., Mironov, V., & Naing, M. W. (2020). In situ bioprinting – Bioprinting from benchside to bedside? Acta Biomaterialia, 101, 14–25. https://doi.org/10.1016/j.actbio.2019.08.045

Skliutas, E., Lebedevaite, M., Kasetaite, S., Rekštytė, S., Lileikis, S., Ostrauskaite, J., & Malinauskas, M. (2020). A Bio-Based Resin for a Multi-Scale Optical 3D Printing. Scientific Reports, 10(1), 9758. https://doi.org/10.1038/s41598-020-66618-1

Stratton, S., Shelke, N. B., Hoshino, K., Rudraiah, S., & Kumbar, S. G. (2016). Bioactive polymeric scaffolds for tissue engineering. Bioactive Materials, 1(2), 93–108. https://doi.org/10.1016/j.bioactmat.2016.11.001

Sule, S. S., Petsiuk, A. L., & Pearce, J. M. (2019). Open Source Completely 3-D Printable Centrifuge. Instruments, 3(2), 30. https://doi.org/10.3390/instruments3020030

Syed, M. S., Rafeie, M., Henderson, R., Vandamme, D., Asadnia, M., & Warkiani, M. E. (2017). A 3D-printed mini-hydrocyclone for high throughput particle separation: Application to primary harvesting of microalgae. Lab on a Chip, 17(14), 2459–2469. https://doi.org/10.1039/C7LC00294G

Tichá, D., Tomášik, J., Oravcová, Ľ., & Thurzo, A. (2024). Three-Dimensionally-Printed Polymer and Composite Materials for Dental Applications with Focus on Orthodontics. Polymers, 16(22), 3151. https://doi.org/10.3390/polym16223151

Tiwari, A. P., Panicker, S. S., Huddy, J. E., Rahman, M. S., Hixon, K. R., & Scheideler, W. J. (2024). Biocompatible 3D Printed MXene Microlattices for Tissue-Integrated Antibiotic Sensing. Advanced Materials Technologies, 9(4), 2301517. https://doi.org/10.1002/admt.202301517

Tong, A., Pham, Q. L., Abatemarco, P., Mathew, A., Gupta, D., Iyer, S., & Voronov, R. (2021). Review of Low-Cost 3D Bioprinters: State of the Market and Observed Future Trends. SLAS TECHNOLOGY: Translating Life Sciences Innovation, 26(4), 333–366. https://doi.org/10.1177/24726303211020297

Traciak, J., Fal, J., & Żyła, G. (2021). 3D printed measuring device for the determination the surface tension of nanofluids. Applied Surface Science, 561, 149878. https://doi.org/10.1016/j.apsusc.2021.149878

Trinh, T. N. D., Do, H. D. K., Nam, N. N., Dan, T. T., Trinh, K. T. L., & Lee, N. Y. (2023). Droplet Based Microfluidics: Applications in Pharmaceuticals. Pharmaceuticals, 16(7), 937. https://doi.org/10.3390/ph16070937

Uddin, M. J., Scoutaris, N., Economidou, S. N., Giraud, C., Chowdhry, B. Z., Donnelly, R. F., & Douroumis, D. (2020). 3D printed microneedles for anticancer therapy of skin tumours. Materials Science and Engineering: C, 107, 110248. https://doi.org/10.1016/j.msec.2019.110248

van Noort, R. (2012). The future of dental devices is digital. Dental Materials, 28(1), 3–12. https://doi.org/10.1016/j.dental.2011.10.014

Voet, V. S. D., Guit, J., & Loos, K. (2021). Sustainable Photopolymers in 3D Printing: A Review on Biobased, Biodegradable, and Recyclable Alternatives. Macromolecular Rapid Communications, 42(3), 2000475. https://doi.org/10.1002/marc.202000475

Waheed, S., M. Cabot, J., P. Macdonald, N., Lewis, T., M. Guijt, R., Paull, B., & C. Breadmore, M. (2016). 3D printed microfluidic devices: Enablers and barriers. Lab on a Chip, 16(11), 1993–2013. https://doi.org/10.1039/C6LC00284F

Wang, N., Hu, W., Jiang, H., Jiang, D., & Wang, L. (2025). A portable micro-nanochannel bio-3D printed liver microtissue biosensor for DON detection. Biosensors and Bioelectronics, 267, 116810. https://doi.org/10.1016/j.bios.2024.116810

Wang, Z., Yan, X., Zhou, Q., Wang, Q., Zhao, D., & Wu, H. (2023). A Directly Moldable, Highly Compact, and Easy-for-Integration 3D Micromixer with Extraordinary Mixing Performance. Analytical Chemistry, 95(23), 8850–8858. https://doi.org/10.1021/acs.analchem.3c00335

Warr, C. A., Hinnen, H. S., Avery, S., Cate, R. J., Nordin, G. P., & Pitt, W. G. (2021). 3D-Printed Microfluidic Droplet Generator with Hydrophilic and Hydrophobic Polymers. Micromachines, 12(1), 91. https://doi.org/10.3390/mi12010091

Wei, K., Tang, C., Ma, H., Fang, X., & Yang, R. (2024). 3D-printed microrobots for biomedical applications. Biomaterials Science, 12(17), 4301–4334. https://doi.org/10.1039/D4BM00674G

Wen, Y., Xun, S., Haoye, M., Baichuan, S., Peng, C., Xuejian, L., Kaihong, Z., Xuan, Y., Jiang, P., & Shibi, L. (2017). 3D printed porous ceramic scaffolds for bone tissue engineering: A review. Biomaterials Science, 5(9), 1690–1698. https://doi.org/10.1039/C7BM00315C

Wilson, D. J., & Mace, C. R. (2017). Reconfigurable Pipet for Customized, Cost-Effective Liquid Handling. Analytical Chemistry, 89(17), 8656–8661. https://doi.org/10.1021/acs.analchem.7b02556

Wiseman, J., Rawther, T., Langbart, M., Kernohan, M., & Ngo, Q. (2022). Sterilization of bedside 3D-printed devices for use in the operating room. Annals of 3D Printed Medicine, 5, 100045. https://doi.org/10.1016/j.stlm.2022.100045

Wong, K. C. (2016). 3D-printed patient-specific applications in orthopedics. Orthopedic Research and Reviews, 8(null), 57–66. https://doi.org/10.2147/ORR.S99614

Xu, Y., Zhang, Q., Li, Y., Pang, X., & Cheng, N. (2024). A 3D-Printed Integrated Handheld Biosensor for the Detection of Vibrio parahaemolyticus. Foods, 13(11), 1775. https://doi.org/10.3390/foods13111775

Xue, D., Zhang, J., Wang, Y., & Mei, D. (2019). Digital Light Processing-Based 3D Printing of Cell Seeding Hydrogel Scaffolds with Regionally Varied Stiffness. ACS Biomaterials Science & Engineering, 5(9), 4825–4833. https://doi.org/10.1021/acsbiomaterials.9b00696

Yang, Y., Li, X., & Pappas, D. (2023). Isolation of leukemia and breast cancer cells from liquid biopsies and clinical samples at low concentration in a 3D printed cell separation device via transferrin receptor affinity. Talanta, 253, 124107. https://doi.org/10.1016/j.talanta.2022.124107

Ye, J., Wilson, D. A., Tu, Y., & Peng, F. (2020). 3D-Printed Micromotors for Biomedical Applications. Advanced Materials Technologies, 5(11), 2000435. https://doi.org/10.1002/admt.202000435

Yin, B., Yue, W., Sohan, A. S. M. M. F., Zhou, T., Qian, C., & Wan, X. (2021). Micromixer with Fine Tuned Mathematical Spiral Structures. ACS Omega, 6(45), 30779–30789. https://doi.org/10.1021/acsomega.1c05024

Zeng, L., Wang, J., Duan, L., & Gao, G. (2025). Highly transparent ionogel for wearable force sensor and 3D printing. European Polymer Journal, 223, 113641. https://doi.org/10.1016/j.eurpolymj.2024.113641

Zhang, Q., Wang, W., Yang, Z., Wang, X., Xu, W., Huang, K., Luo, Y., He, X., & Cheng, N. (2021). A portable 3D-printed biosensing device for rapid detection of genetically modified maize MON810. Sensors and Actuators B: Chemical, 349, 130748. https://doi.org/10.1016/j.snb.2021.130748

Zhang, Y., Li, M., Tseng, T.-M., & Schlichtmann, U. (2024). Open-source interactive design platform for 3D-printed microfluidic devices. Communications Engineering, 3(1), 1–13. https://doi.org/10.1038/s44172-024-00217-0

Zhang, Y. S., Arneri, A., Bersini, S., Shin, S.-R., Zhu, K., Goli-Malekabadi, Z., Aleman, J., Colosi, C., Busignani, F., Dell’Erba, V., Bishop, C., Shupe, T., Demarchi, D., Moretti, M., Rasponi, M., Dokmeci, M.R., Atala, A., & Khademhosseini, A. (2016). Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials, 110, 45–59. https://doi.org/10.1016/j.biomaterials.2016.09.003

Zhou, L., Miller, J., Vezza, J., Mayster, M., Raffay, M., Justice, Q., Al Tamimi, Z., Hansotte, G., Sunkara, L. D., & Bernat, J. (2024). Additive Manufacturing: A Comprehensive Review. Sensors, 24(9), 2668. https://doi.org/10.3390/s24092668

Zub, K., Hoeppener, S., & Schubert, U. S. (2022). Inkjet Printing and 3D Printing Strategies for Biosensing, Analytical, and Diagnostic Applications. Advanced Materials, 34(31), 2105015. https://doi.org/10.1002/adma.202105015

Downloads

Published

10.07.2025

How to Cite

Agir, I. (2025). The role of 3D printing in advancing biotechnology and bioengineering: A review. EUCHEMBIOJ Reviews, 1(2), e25010. https://doi.org/10.62063/rev-203941

Issue

Section

Review

Similar Articles

You may also start an advanced similarity search for this article.