KEYWORDS
TOPICS
ABSTRACT
The degree of civilization exhibited by a society is largely determined by its reliance on energy, and as traditional energy sources such as fossil fuels become scarcer, new technologies will be required to secure sustainable energy. Microbial fuel cell technology is one of the most creative ways to meet humanity's energy demands because it can generate electrical energy from carbon sources. The framework of the limitations limiting the dissemination of this technology has been used to explore in depth new designs and configurations that have been produced recently. Future developments and current applications of this technology in bioremediation investigations are explored. The use of microbial fuel cell technology as a microbial biosensor for the identification of environmental contaminants is particularly significant. However, for a clean and sustainable ecosystem, it is imperative to disclose the challenges associated with the future adoption of this technology.
ACKNOWLEDGEMENTS
Not applicable.
FUNDING
Not applicable.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
PEER REVIEW INFORMATION
Article has been screened for originality
Externally peer reviewed.
REFERENCES (108)
1.
Abourached, C., Catal, T., & Liu, H. (2014). Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production. Water Research 51, 228-233. https://doi.org/10.1016/j.watr....
 
2.
Abdelkareem, M. A., Elsaid, K., Wilberforce, T., Kamil, M., Sayed, E. T., & Olabi, A. (2021). Environmental aspects of fuel cells: A review. The Science of the total environment, 752, 141803. https://doi.org/10.1016/j.scit....
 
3.
Aber, S., Shi, Z., Xing, K., Rameezdeen, R., Chow, C. W. K., Hagare, D., & Jindal, T. (2023). Microbial Desalination Cell for Sustainable Water Treatment: A Critical Review. Global challenges (Hoboken, NJ), 7(10), 2300138. https://doi.org/10.1002/gch2.2....
 
4.
Adekunle, A., Gomez Vidales, A., Woodward, L., & Tartakovsky, B. (2021). Microbial fuel cell soft sensor for real-time toxicity detection and monitoring. Environmental science and pollution research international, 28(10), 12792–12802. https://doi.org/10.1007/s11356....
 
5.
Adekunle, A., Bambace, S., Tanguay-Rioux, F., & Tartakovsky, B. (2023). Microbial Fuel Cell Biosensor with Capillary Carbon Source Delivery for Real-Time Toxicity Detection. Sensors (Basel, Switzerland), 23(16), 7065. https://doi.org/10.3390/s23167....
 
6.
Aiyer, K. S. (2020). How does electron transfer occur in microbial fuel cells?. World journal of microbiology & biotechnology, 36(2), 19. https://doi.org/10.1007/s11274....
 
7.
Ait-Itto, F. Z., Behan, J. A., Martinez, M., & Barrière, F. (2024). Development of bioanodes rich in exoelectrogenic bacteria using iron-rich palaeomarine sediment inoculum. Bioelectrochemistry (Amsterdam, Netherlands), 156, 108618. https://doi.org/10.1016/j.bioe....
 
8.
Akagunduz, D., Cebecioglu, R., Ozen, F., Ozdemir, M., Bermek, H., Tarhan, N., Arslan, A., Catal, T. 2022. Effects of Psychoactive Pharmaceuticals in Wastewater on Electricity Generation in Microbial Fuel Cells. CLEAN–Soil, Air, Water, 2100027. https://doi.org/10.1002/clen.2....
 
9.
Akul, N.B., Cebecioglu, R., Akagunduz, D., Bermek, H., Ozdemir, M., Catal, T. 2021. Effects of mevastatin on electricity generation in microbial fuel cells. Polish Journal of Environmental Studies 30 (6), 5407. https://doi.org/10.15244/pjoes....
 
10.
An, J., Kim, B., Jang, J. K., Lee, H. S., & Chang, I. S. (2014). New architecture for modulization of membraneless and single-chambered microbial fuel cell using a bipolar plate-electrode assembly (BEA). Biosensors & bioelectronics, 59, 28–34. https://doi.org/10.1016/j.bios....
 
11.
Antolini, E. (2015). Composite materials for polymer electrolyte membrane microbial fuel cells. Biosensors & bioelectronics, 69, 54–70. https://doi.org/10.1016/j.bios... Apollon, W. (2023). An Overview of Microbial Fuel Cell Technology for Sustainable Electricity Production. Membranes, 13(11), 884. https://doi.org/10.3390/membra....
 
12.
Arkatkar, A., Mungray, A. K., & Sharma, P. (2021). Biological modification in air-cathode microbial fuel cell: Effect on oxygen diffusion, current generation and wastewater degradation. Chemosphere, 284, 131243. https://doi.org/10.1016/j.chem....
 
13.
Babanova, S., Hubenova, Y., & Mitov, M. (2011). Influence of artificial mediators on yeast-based fuel cell performance. Journal of bioscience and bioengineering, 112(4), 379–387. https://doi.org/10.1016/j.jbio....
 
14.
Bazina, N., Ahmed, T. G., Almdaaf, M., Jibia, S., & Sarker, M. (2023). Power generation from wastewater using microbial fuel cells: A review. Journal of biotechnology, 374, 17–30. https://doi.org/10.1016/j.jbio...
 
15.
Behera, M., Jana, P. S., & Ghangrekar, M. M. (2010). Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode. Bioresource technology, 101(4), 1183–1189. https://doi.org/10.1016/j.bior....
 
16.
Bermek, H., Catal, T., Akan, S. S., Ulutaş, M. S., Kumru, M., Özgüven, M., Liu, H., Özçelik, B., & Akarsubaşı, A. T. (2014). Olive mill wastewater treatment in single-chamber air-cathode microbial fuel cells. World journal of microbiology & biotechnology, 30(4), 1177–1185. https://doi.org/10.1007/s11274...
 
17.
Bhaduri, S., & Behera, M. (2024). From single-chamber to multi-anodic microbial fuel cells: A review. Journal of environmental management, 355, 120465. https://doi.org/10.1016/j.jenv...
 
18.
Biffinger, J. C., Pietron, J., Bretschger, O., Nadeau, L. J., Johnson, G. R., Williams, C. C., Nealson, K. H., & Ringeisen, B. R. (2008). The influence of acidity on microbial fuel cells containing Shewanella oneidensis. Biosensors & bioelectronics, 24(4), 906–911. https://doi.org/10.1016/j.bios...
 
19.
Catal, T., Xu, S., Li, K., Bermek, H., & Liu, H. (2008a). Electricity generation from polyalcohols in single-chamber microbial fuel cells. Biosensors & bioelectronics, 24(4), 855–860. https://doi.org/10.1016/j.bios...
 
20.
Catal, T., Li, K., Bermek, H., Liu, H. (2008b). Electricity production from twelve monosaccharides using microbial fuel cells. Journal of Power Sources 175 (1), 196-200. https://doi.org/10.1016/j.jpow...
 
21.
Catal, T., Fan, Y., Li, K., Bermek, H., Liu, H. (2011a). Utilization of mixed monosaccharides for power generation in microbial fuel cells. Journal of Chemical Technology & Biotechnology 86 (4), 570 574. https://doi.org/10.1002/jctb.2....
 
22.
Catal, T., Kavanagh, P., O’Flaherty, V., Leech, D. (2011b). Generation of electricity in microbial fuel cells at sub-ambient temperatures. Journal of Power Sources 196 (5), 2676-2681. https://doi.org/10.1016/j.jpow...
 
23.
Catal, T., Cysneiros, D., O’Flaherty, V., & Leech, D. (2011c). Electricity generation in single-chamber microbial fuel cells using a carbon source sampled from anaerobic reactors utilizing grass silage. Bioresource technology, 102(1), 404-410.. https://doi.org/10.1016/j.bior....
 
24.
Catal, T., Lesnik, K.L., & Liu, H. (2015). Suppression of methanogenesis for hydrogen production in single-chamber microbial electrolysis cells using various antibiotics. Bioresource Technology, 187, 77-83. https://doi.org/10.1016/j.bior....
 
25.
Catal, T., Yavaser, S., Enisoglu-Atalay, V., Bermek, H., & Ozilhan, S. (2018). Monitoring of neomycin sulfate antibiotic in microbial fuel cells. Bioresource technology, 268, 116–120. https://doi.org/10.1016/j.bior...
 
26.
Catal, T., Kul, A., Atalay, V.E., Bermek, H., Ozilhan, S., & Tarhan, N. (2019a). Efficacy of microbial fuel cells for sensing of cocaine metabolites in urine-based wastewater. Journal of Power Sources, 414, 1-7. https://doi.org/10.1016/j.jpow....
 
27.
Catal, T., Liu, H., Fan, Y., & Bermek, H. (2019b). A clean technology to convert sucrose and lignocellulose in microbial electrochemical cells into electricity and hydrogen. Bioresource technology reports, 5, 331-334. https://doi.org/10.1016/j.bite....
 
28.
Catal, T., Liu, H., Kilinc, B., & Yilancioglu, K. (2024). Extracellular polymeric substances in electroactive biofilms play a crucial role in improving the efficiency of microbial fuel and electrolysis cells. Letters in applied microbiology, 77(3), ovae017. https://doi.org/10.1093/lambio....
 
29.
Cebecioglu, R., Akagunduz, D., & Catal, T. (2021). Hydrogen production in single-chamber microbial electrolysis cells using Ponceau S dye. 3 Biotech, 11(1), 27. https://doi.org/10.1007/s13205...
 
30.
Cebecioglu, R.E., Akagunduz, D., Bermek, H., Atalay, V.E., & Catal, T. (2022). Decolorization mechanisms of reactive yellow 145 and ponceau S in microbial fuel cells during simultaneous electricity production. Main Group Chemistry, 21(3), 851-863. https://doi.org/10.3233/MGC-21...
 
31.
Chandran, M., Palanisamy, K., Benson, D., & Sundaram, S. (2022). A Review on Electric and Fuel Cell Vehicle Anatomy, Technology Evolution and Policy Drivers towards EVs and FCEVs Market Propagation. Chem Rec, 22(2), e202100235.. https://doi.org/10.1002/tcr.20....
 
32.
Chen, L., Zhang, P., Shang, W., Zhang, H., Li, Y., Zhang, W., Zhang, Z., & Liu, F. (2018). Enrichment culture of electroactive microorganisms with high magnetic susceptibility enhances the performance of microbial fuel cells. Bioelectrochemistry (Amsterdam, Netherlands), 121, 65–73. https://doi.org/10.1016/j.bioe....
 
33.
Chen, J., Zhao, K., Wu, Y., Liu, J., Wang, R., Yang, Y., & Liu, Y. (2023). Improved bioelectrochemical performance of MnO2 nanorods modified cathode in microbial fuel cell. Environmental science and pollution research international, 30(17), 49052–49059. https://doi.org/10.1007/s11356...
 
34.
Chouler, J., & Di Lorenzo, M. (2019). Pesticide detection by a miniature microbial fuel cell under controlled operational disturbances. Water science and technology: a journal of the International Association on Water Pollution Research, 79(12), 2231–2241. https://doi.org/10.2166/wst.20...
 
35.
Delord, B., Neri, W., Bertaux, K., Derre, A., Ly, I., Mano, N., & Poulin, P. (2017). Carbon nanotube f iber mats for microbial fuel cell electrodes. Bioresource technology, 243, 1227–1231. https://doi.org/10.1016/j.bior...
 
36.
Dong, M., Nielsen, L. P., Yang, S., Klausen, L. H., & Xu, M. (2024). Cable bacteria: widespread f ilamentous electroactive microorganisms protecting environments. Trends in microbiology, 32(7), 697–706. https://doi.org/10.1016/j.tim.....
 
37.
Efraim, A., Saeed, M., Elbaz, M. A., Alaa, M., Ahmed, N., Adel, R., Hazem, Y., Elshatoury, E., & Gomaa, O. M. (2023). Shewanella chilikensis MG22 isolated from tannery site for malachite green decolorization in microbial fuel cell: a proposed solution for recirculating aquaculture system (RAS). Microbial cell factories, 22(1), 142. https://doi.org/10.1186/s12934....
 
38.
Estrada-Arriaga, E. B., Hernández-Romano, J., García-Sánchez, L., Guillén Garcés, R. A., Bahena Bahena, E. O., Guadarrama-Pérez, O., & Moeller Chavez, G. E. (2018). Domestic wastewater treatment and power generation in continuous flow air-cathode stacked microbial fuel cell: Effect of series and parallel configuration. Journal of environmental management, 214, 232–241. https://doi.org/10.1016/j.jenv....
 
39.
Fan, Y., Janicek, A., & Liu, H. (2024). Stable and high voltage and power output of CEA-MFCs internally connected in series (iCiS-MFC). The European Chemistry and Biotechnology Journal, (1), 47–57. https://doi.org/10.62063/ecb-1....
 
40.
Freguia, S., Masuda, M., Tsujimura, S., & Kano, K. (2009). Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone. Bioelectrochemistry (Amsterdam, Netherlands), 76(1-2), 14–18. https://doi.org/10.1016/j.bioe....
 
41.
Fu, Q., Kobayashi, H., Kawaguchi, H., Wakayama, T., Maeda, H., & Sato, K. (2013). A thermophilic gram-negative nitrate-reducing bacterium, Calditerrivibrio nitroreducens, exhibiting electricity generation capability. Environmental science & technology, 47(21), 12583–12590. https://doi.org/10.1021/es4027....
 
42.
Fujimura, S., Kamitori, K., Kamei, I., Nagamine, M., Miyoshi, K., & Inoue, K. (2022). Performance of stacked microbial fuel cells with barley-shochu waste. Journal of bioscience and bioengineering, 133(5), 467–473. https://doi.org/10.1016/j.jbio....
 
43.
Gajda, I., Greenman, J., & Ieropoulos, I. (2020). Microbial Fuel Cell stack performance enhancement through carbon veil anode modification with activated carbon powder. Applied energy, 262, 114475. https://doi.org/10.1016/j.apen....
 
44.
Georg, S., de Eguren Cordoba, I., Sleutels, T., Kuntke, P., Heijne, A. T., & Buisman, C. J. N. (2020). Competition of electrogens with methanogens for hydrogen in bioanodes. Water research, 170, 115292. https://doi.org/10.1016/j.watr....
 
45.
Gul, H., Raza, W., Lee, J., Azam, M., Ashraf, M., & Kim, K. H. (2021). Progress in microbial fuel cell technology for wastewater treatment and energy harvesting. Chemosphere, 281, 130828. https://doi.org/10.1016/j.chem...
 
46.
Jain, M., Sai Kiran, P., Ghosal, P. S., & Gupta, A. K. (2023). Development of microbial fuel cell integrated constructed wetland (CMFC) for removal of paracetamol and diclofenac in hospital wastewater. Journal of environmental management, 344, 118686. https://doi.org/10.1016/j.jenv...
 
47.
Jaswal, V., J, R. B., & N, Y. K. (2023). Synergistic effect of TiO2 nanostructured cathode in microbial fuel cell for bioelectricity enhancement. Chemosphere, 330, 138556. https://doi.org/10.1016/j.chem...
 
48.
Jia, Y., Ma, D., & Wang, X. (2020). Electrochemical preparation and application of PANI/MWNT and PPy/MWNT composite anodes for anaerobic fluidized bed microbial fuel cell. 3 Biotech, 10(1), 3. https://doi.org/10.1007/s13205....
 
49.
Hu, X., Liu, J., Cheng, W., Li, X., Zhao, Y., Wang, F., Geng, Z., Wang, Q., & Dong, Y. (2023). Synergistic interactions of microbial fuel cell and microbially induced carbonate precipitation technology with molasses as the substrate. Environmental research, 228, 115849. https://doi.org/10.1016/j.envr...
 
50.
Icaza-Alvarez, D., Jurado, F., Flores, C., Ortiz, G.R. (2023). Ecuadorian electrical system: Current status, renewable energy and projections. Heliyon. 9(5), e16010. https://doi.org/10.1016/j.heli...
 
51.
Ishaq, A., Said, M. I. M., Azman, S. B., Dandajeh, A. A., Lemar, G. S., & Jagun, Z. T. (2023). Utilization of microbial fuel cells as a dual approach for landfill leachate treatment and power production: a review. Environmental science and pollution research international, 10.1007/s11356-023 30841-w. Advance online publication. https://doi.org/10.1007/s11356....
 
52.
Kampker, A., P. Ayvaz, C. Schön, J. Karstedt, R. Förstmann, F. Welker, (2020). Challenges towards large-scale fuel cell production: Results of an expert assessment study, International Journal of Hydrogen Energy, 45(53), 29288-29296. https://doi.org/10.1016/j.ijhy....
 
53.
Kang, Y. L., Ibrahim, S., & Pichiah, S. (2015). Synergetic effect of conductive polymer poly(3,4 ethylenedioxythiophene) with different structural configuration of anode for microbial fuel cell application. Bioresource technology, 189, 364–369. https://doi.org/10.1016/j.bior....
 
54.
Khan, A., Salama, E.S., Chen, Z., Ni, H., Zhao, S., Zhou, T., Pei, Y., Sani, R.K., Ling, Z., Liu, P., Li, X. (2020). A novel biosensor for zinc detection based on microbial fuel cell system. Biosensors and bioelectronics 147, 111763. https://doi.org/10.1016/j.bios....
 
55.
Kilinc, B., Akagunduz, D., Ozdemir, M., Kul, A., & Catal, T. (2023). Hydrogen production using cocaine metabolite in microbial electrolysis cells. 3 Biotech, 13(11), 382. https://doi.org/10.1007/s13205...
 
56.
Kilinc, B., & Catal, T. (2023). A Novel Microbial Fuel Cell for the Sensing of Sodium Acetate in Soil. Polish Journal of Environmental Studies, 32(5), 4931-4936. https://doi.org/10.15244/pjoes....
 
57.
Kirubaharan, C. J., Wang, J. W., Abbas, S. Z., Shah, S. B., Zhang, Y., Wang, J. X., & Yong, Y. C. (2023). Self-assembly of cell-embedding reduced graphene oxide/ polypyrrole hydrogel as efficient anode for high-performance microbial fuel cell. Chemosphere, 326, 138413. https://doi.org/10.1016/j.chem...
 
58.
Koók, L., Quéméner, E. D., Bakonyi, P., Zitka, J., Trably, E., Tóth, G., Pavlovec, L., Pientka, Z., Bernet, N., Bélafi-Bakó, K., & Nemestóthy, N. (2019). Behavior of two-chamber microbial electrochemical systems started-up with different ion-exchange membrane separators. Bioresource technology, 278, 279–286. https://doi.org/10.1016/j.bior....
 
59.
Kumru, M., Eren, H., Catal, T., Bermek, H., & Akarsubaşı, A.T. (2012). Study of azo dye decolorization and determination of cathode microorganism profile in air-cathode microbial fuel cells. Environmental technology, 33 (18), 2167-2175. https://doi.org/10.1080/095933....
 
60.
Li, W. W., & Yu, H. Q. (2015). Stimulating sediment bioremediation with benthic microbial fuel cells. Biotechnology advances, 33(1), 1–12. https://doi.org/10.1016/j.biot....
 
61.
Li, H., Cheng, J., Dong, H., Fang, Z., Zhou, J., & Lin, R. (2021a). Zeolitic imidazolate framework derived porous carbon enhances methanogenesis by facilitating interspecies electron transfer: Understanding fluorimetric and electrochemical responses of multi-layered extracellular polymeric substances. The Science of the total environment, 781, 146447. https://doi.org/10.1016/j.scit....
 
62.
Li, Y., Liu, J., Chen, X., Wu, J., Li, N., He, W., & Feng, Y. (2021b). Tailoring Surface Properties of Electrodes for Synchronous Enhanced Extracellular Electron Transfer and Enriched Exoelectrogens in Microbial Fuel Cells. ACS applied materials & interfaces, 13(49), 58508–58521. https://doi.org/10.1021/acsami....
 
63.
Liang, P., Duan, R., Jiang, Y., Zhang, X., Qiu, Y., & Huang, X. (2018). One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment. Water research, 141, 1–8. https://doi.org/10.1016/j.watr....
 
64.
Ma, Z., Meliana, C., Munawaroh, H. S. H., Karaman, C., Karimi-Maleh, H., Low, S. S., & Show, P. L. (2022). Recent advances in the analytical strategies of microbial biosensor for detection of pollutants. Chemosphere, 306, 135515. https://doi.org/10.1016/j.chem....
 
65.
Mahmoud, M., Gad-Allah, T. A., El-Khatib, K. M., & El-Gohary, F. (2011). Power generation using spinel manganese-cobalt oxide as a cathode catalyst for microbial fuel cell applications. Bioresource technology, 102(22), 10459–10464. https://doi.org/10.1016/j.bior....
 
66.
Mahmoodzadeh, F., Navidjouy, N., Alizadeh, S., & Rahimnejad, M. (2023). Investigation of microbial fuel cell performance based on the nickel thin film modified electrodes. Scientific reports, 13(1), 20755. https://doi.org/10.1038/s41598....
 
67.
Mirza, S. S., Al-Ansari, M. M., Ali, M., Aslam, S., Akmal, M., Al-Humaid, L., & Hussain, A. (2022). Towards sustainable wastewater treatment: Influence of iron, zinc and aluminum as anode in combination with salt bridge on microbial fuel cell performance. Environmental research, 209, 112781. https://doi.org/10.1016/j.envr....
 
68.
Merino-Jimenez, I., Gonzalez-Juarez, F., Greenman, J., & Ieropoulos, I. (2019). Effect of the ceramic membrane properties on the microbial fuel cell power output and catholyte generation. Journal of power sources, 429, 30–37. https://doi.org/10.1016/j.jpow....
 
69.
Mohyudin, S., Farooq, R., Jubeen, F., Rasheed, T., Fatima, M., & Sher, F. (2022). Microbial fuel cells a state-of-the-art technology for wastewater treatment and bioelectricity generation. Environmental research, 204(Pt D), 112387. https://doi.org/10.1016/j.envr....
 
70.
Moon, H., Chang, I. S., & Kim, B. H. (2006). Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresource technology, 97(4), 621–627. https://doi.org/10.1016/j.bior...
 
71.
Motos, R.P., Molina, G., Ter Heijne, A., Sleutels, T., Saakes, M., & Buisman, C. (2017). Prototype of a scaled-up microbial fuel cell for copper recovery. Journal of chemical technology and biotechnology (Oxford, Oxfordshire: 1986), 92(11), 2817–2824. https://doi.org/10.1002/jctb.5....
 
72.
Ouyang, T., Liu, W., Shi, X., Li, Y., & Hu, X. (2023). Multi-criteria assessment and triple-objective optimization of a bio-anode microfluidic microbial fuel cell. Bioresource technology, 382, 129193. https://doi.org/10.1016/j.bior....
 
73.
Ozdemir, M., Enisoglu-Atalay, V., Bermek, H., Ozilhan, S., Tarhan, N., & Catal, T. (2019). Removal of a cannabis metabolite from human urine in microbial fuel cells generating electricity. Bioresource technology reports, 5, 121-126. https://doi.org/10.1016/j.bite....
 
74.
Prathiba, S., Kumar, P. S., & Vo, D. N. (2022). Recent advancements in microbial fuel cells: A review on its electron transfer mechanisms, microbial community, types of substrates and design for bio-electrochemical treatment. Chemosphere, 286(Pt 3), 131856. https://doi.org/10.1016/j.chem....
 
75.
Priya, A. K., Subha, C., Kumar, P. S., Suresh, R., Rajendran, S., Vasseghian, Y., & Soto-Moscoso, M. (2022). Advancements on sustainable microbial fuel cells and their future prospects: A review. Environmental research, 210, 112930. https://doi.org/10.1016/j.envr....
 
76.
Pugazhendi, A., Jamal, M. T., Al-Mur, B. A., & Jeyakumar, R. B. (2022). Bioaugmentation of electrogenic halophiles in the treatment of pharmaceutical industrial wastewater and energy production in microbial fuel cell under saline condition. Chemosphere, 288(Pt 2), 132515. https://doi.org/10.1016/j.chem...
 
77.
Qiu, B., Hu, Y., Tang, C., Chen, Y., & Cheng, J. (2021). Simultaneous mineralization of 2-anilinophenylacetate and denitrification by Ru/Fe modified biocathode double-chamber microbial fuel cell. The Science of the total environment, 792, 148446. https://doi.org/10.1016/j.scit....
 
78.
Reguera G. (2018). Microbial nanowires and electroactive biofilms. FEMS microbiology ecology, 94(7), 10.1093/femsec/fiy086. https://doi.org/10.1093/femsec....
 
79.
Roh, S. H., & Woo, H. G. (2015). Carbon Nanotube Composite Electrode Coated with Polypyrrole for Microbial Fuel Cell Application. Journal of nanoscience and nanotechnology, 15(1), 484–487. https://doi.org/10.1166/jnn.20....
 
80.
Roy, H., Rahman, T. U., Tasnim, N., Arju, J., Rafid, M. M., Islam, M. R., Pervez, M. N., Cai, Y., Naddeo, V., & Islam, M. S. (2023). Microbial Fuel Cell Construction Features and Application for Sustainable Wastewater Treatment. Membranes, 13(5), 490. https://doi.org/10.3390/membra....
 
81.
Santoro, C., Serov, A., Narvaez Villarrubia, C. W., Stariha, S., Babanova, S., Schuler, A. J., Artyushkova, K., & Atanassov, P. (2015). Double-chamber microbial fuel cell with a non-platinum group metal Fe-N-C cathode catalyst. ChemSusChem, 8(5), 828–834. https://doi.org/10.1002/cssc.2...
 
82.
Saran, C., Purchase, D., Saratale, G.D., Saratale, R.G., Romanholo, Ferreira, L.F., Bilal, M., Iqbal, H.M.N., Hussain, C.M., Mulla, S.I., & Bharagava, R.N. (2023). Microbial fuel cell: A green ecofriendly agent for tannery wastewater treatment and simultaneous bioelectricity/power generation. Chemosphere, 312(Pt 1), 137072 https://doi.org/10.1016/j.chem....
 
83.
Sato, C., Apollon, W., Luna-Maldonado, A. I., Paucar, N. E., Hibbert, M., & Dudgeon, J. (2023). Integrating Microbial Fuel Cell and Hydroponic Technologies Using a Ceramic Membrane Separator to Develop an Energy-Water-Food Supply System. Membranes, 13(9), 803. https://doi.org/10.3390/membra...
 
84.
Selvasembian, R., Mal, J., Rani, R., Sinha, R., Agrahari, R., Joshua, I., Santhiagu, A., & Pradhan, N. (2022). Recent progress in microbial fuel cells for industrial effluent treatment and energy generation: Fundamentals to scale-up application and challenges. Bioresource technology, 346, 126462. https://doi.org/10.1016/j.bior....
 
85.
Sen, P., Akagunduz, D., Aghdam, A.S., Cebeci, F.Ç., Nyokong, T., & Catal, T. (2020). Synthesis of novel Schiff base cobalt (II) and iron (III) complexes as cathode catalysts for microbial fuel cell applications. Journal of Inorganic and Organometallic Polymers and Materials, 30, 1110-1120. https://doi.org/10.1007/s10904....
 
86.
Sonmez, E., Avci, B., Mohamed, N., & Bermek, H. (2024). Investigation of performance losses in microbial fuel cells with low platinum loadings on air-cathodes. The european chemistry and biotechnology journal, (1), 11–26. https://doi.org/10.62063/ecb-1....
 
87.
Sorgato, A. C., Jeremias, T. C., Lobo, F. L., & Lapolli, F. R. (2023). Microbial fuel cell: Interplay of energy production, wastewater treatment, toxicity assessment with hydraulic retention time. Environmental research, 231(Pt 2), 116159. https://doi.org/10.1016/j.envr....
 
88.
Sukkasem, C. (2024) Exploring biofilm-forming bacteria for integration into BioCircuit wastewater treatment. The european chemistry and biotechnology journal, 2, 96-109.
 
89.
Suresh, R., Rajendran, S., Kumar, P. S., Dutta, K., & Vo, D. N. (2022). Current advances in microbial fuel cell technology toward removal of organic contaminants - A review. Chemosphere, 287(Pt 2), 132186. https://doi.org/10.1016/j.chem....
 
90.
Strik, D. P., Hamelers, H. V., & Buisman, C. J. (2010). Solar energy powered microbial fuel cell with a reversible bioelectrode. Environmental science & technology, 44(1), 532–537. https://doi. org/10.1021/es902435v
 
91.
Tahir, K., Miran, W., Jang, J., Maile, N., Shahzad, A., Moztahida, M., Ghani, A. A., Kim, B., & Lee, D. S. (2021). MnCo2O4 coated carbon felt anode for enhanced microbial fuel cell performance. Chemosphere, 265, 129098. https://doi.org/10.1016/j.chem....
 
92.
Tejedor-Sanz, S., Li, S., Kundu, B. B., & Ajo-Franklin, C. M. (2023). Extracellular electron uptake from a cathode by the lactic acid bacterium Lactiplantibacillus plantarum. Frontiers in microbiology, 14, 1298023. https://doi.org/10.3389/fmicb.....
 
93.
Thapa, B. S., Kim, T., Pandit, S., Song, Y. E., Afsharian, Y. P., Rahimnejad, M., Kim, J. R., & Oh, S. E. (2022). Overview of electroactive microorganisms and electron transfer mechanisms in microbial electrochemistry. Bioresource technology, 347, 126579. https://doi.org/10.1016/j.bior...
 
94.
Walter, X. A., Santoro, C., Greenman, J., & Ieropoulos, I. (2020). Scaling up self-stratifying supercapacitive microbial fuel cell. International journal of hydrogen energy, 45(46), 25240 25248. https://doi.org/10.1016/j.ijhy....
 
95.
Wang, J., Song, X., Wang, Y., Abayneh, B., Ding, Y., Yan, D., & Bai, J. (2016). Microbial community structure of different electrode materials in constructed wetland incorporating microbial fuel cell. Bioresource technology, 221, 697–702. https://doi.org/10.1016/j.bior....
 
96.
Wang, G., & Feng, C. (2017). Electrochemical Polymerization of Hydroquinone on Graphite Felt as a Pseudocapacitive Material for Application in a Microbial Fuel Cell. Polymers, 9(6), 220. https:// doi.org/10.3390/polym9060220
 
97.
Wang, X., Tian, Y., Liu, H., Zhao, X., & Peng, S. (2019). The influence of incorporating microbial fuel cells on greenhouse gas emissions from constructed wetlands. The Science of the total environment, 656, 270–279. https://doi.org/10.1016/j.scit....
 
98.
Wu, D., Zhang, B., Shi, S., Tang, R., Qiao, C., Li, T., Jia, J., Yang, M., Si, X., Wang, Y., Sun, X., Xiao, D., Li, F., & Song, H. (2024). Engineering extracellular electron transfer to promote simultaneous brewing wastewater treatment and chromium reduction. Journal of hazardous materials, 465, 133171. https://doi.org/10.1016/j.jhaz....
 
99.
Vidhyeswari, D., Surendhar, A., & Bhuvaneshwari, S. (2022). General aspects and novel PEMss in microbial fuel cell technology: A review. Chemosphere, 309(Pt 1), 136454. https://doi.org/10.1016/j.chem...
 
100.
Yao, H., Xiao, J., & Tang, X. (2023). Microbial Fuel Cell-Based Organic Matter Sensors: Principles, Structures and Applications. Bioengineering (Basel, Switzerland), 10(8), 886. https://doi.org/10.3390/bioeng...
 
101.
Yildiz, I. 1.12 Fossil Fuels, Editor(s): Ibrahim Dincer, Comprehensive Energy Systems, Elsevier, 2018, Pages 521-567, ISBN 9780128149256, Yu, M., Yang, Q., Yuan, X., Li, Y., Chen, X., Feng, Y., & Liu, J. (2021). Boosting oxygen reduction and permeability properties of doped iron-porphyrin membrane cathode in microbial fuel cells. Bioresource technology, 320(Pt A), 124343. https://doi.org/10.1016/j.bior....
 
102.
Zhang, J., Jiao, W., Huang, S., Wang, H., Cao, X., Li, X., Sakamaki, T. (2022). Application of microbial fuel cell technology to the remediation of compound heavy metal contamination in soil. Journal of Environment management 320, 115670. https://doi.org/10.1016/j.jenv....
 
103.
Zhang, G., Liang, D., Zhao, Z., Qi, J., & Huang, L. (2022b). Enhanced performance of microbial fuel cell with electron mediators from tetracycline hydrochloride degradation. Environmental research, 206, 112605. https://doi.org/10.1016/j.envr....
 
104.
Zhao, F., Rahunen, N., Varcoe, J. R., Roberts, A. J., Avignone-Rossa, C., Thumser, A. E., & Slade, R. C. (2009). Factors affecting the performance of microbial fuel cells for sulfur pollutants removal. Biosensors & bioelectronics, 24(7), 1931–1936. https://doi.org/10.1016/j.bios....
 
105.
Zheng, L., Lin, X., Liu, Y., Li, H., Sun, Y., & Li, C. (2022). Synergistically enhanced oxygen reduction reaction and oxytetracycline mineralization by FeCoO/GO modified cathode in microbial fuel cell. The Science of the total environment, 808, 151873. https://doi.org/10.1016/j.scit....
 
106.
Zhou, H., Xuanyuan, X., Lv, X., Wang, J., Feng, K., Chen, C., Ma, J., & Xing, D. (2023). Mechanisms of magnetic sensing and regulating extracellular electron transfer of electroactive bacteria under magnetic fields. The Science of the total environment, 895, 165104. https://doi.org/10.1016/j.scit...
 
107.
Zhu, K., Xu, Y., Yang, X., Fu, W., Dang, W., Yuan, J., & Wang, Z. (2022). Sludge Derived Carbon Modified Anode in Microbial Fuel Cell for Performance Improvement and Microbial Community Dynamics. Membranes, 12(2), 120. https://doi.org/10.3390/membra... Zhu, T. J., Lin, C. W., & Liu, S. H. (2023). Sensitivity and reusability of a simple microbial fuel cell based sensor for detecting bisphenol A in wastewater. Chemosphere, 320, 138082. https://doi.org/10.1016/j.chem....
 
108.
Zhuang, L., Zhou, S., Li, Y., & Yuan, Y. (2010). Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode. Bioresource technology, 101(10), 3514–3519. https://doi.org/10.1016/j.bior....
 
eISSN:3062-0414
Journals System - logo
Scroll to top